

django-oscar-cch

[image: license] [https://pypi.python.org/pypi/django-oscar-cch] [image: kit] [https://pypi.python.org/pypi/django-oscar-cch] [image: format] [https://pypi.python.org/pypi/django-oscar-cch]

This package handles integration between django-oscar based e-commerce sites and the CCH Sales Tax Office [http://www.salestax.com/products/calculations-solutions/sales-tax-office.html] SOAP API.

Full Documentation: https://django-oscar-cch.readthedocs.io

Contents

	Installation
	Caveats

	Installation Guide

	Usage
	Simple Integration

	Custom Integration

	Django Settings
	Connection Settings

	Transaction Settings

	Product Taxation Settings

	Other Settings

	API Reference
	PNP Installations

	Models

	Changelog
	2.2.9

	2.2.8

	2.2.7

	2.2.6

	2.2.5

	2.2.4

	2.2.3

	2.2.2

	2.2.1

	2.2.0

	2.1.0

	2.0.0

	1.1.1

	1.1.0

	1.0.5

	1.0.4

	1.0.3

	1.0.2

	1.0.1

	1.0.0

Installation

Caveats

	You must fork the order application from Oscar to enable tax calculation as part of placing an order.

	Persistence of tax details, while optional, requires that your project uses PostgreSQL. It relies on the HStore field.

Installation Guide

	Install the django-oscar-cch package.:

$ pip install django-oscar-cch

	Add oscarcch to your INSTALLED_APPS:

myproject/settings.py
...
INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.postgres',
 ...
 'oscarcch',
 ...
] + get_core_apps([
 ...
])
...

	Add some attributes to settings.py to configure how the application should connect to CCH.:

myproject/settings.py

Add this is you need to connect to the SOAP API through an HTTP Proxy.
See the instrumented-soap documentation for more details.
SOAP_PROXY_URL = ...

Configure the CCH WSDL location, entity, and division code
CCH_WSDL = ...
CCH_ENTITY = ...
CCH_DIVISION = ...

Provide either a product SKU or a product group and item to send to CCH when calculating taxes
CCH_PRODUCT_SKU = ...
CCH_PRODUCT_GROUP = ...
CCH_PRODUCT_ITEM = ...

	Alternative to setting CCH_PRODUCT_SKU, CCH_PRODUCT_GROUP, and CCH_PRODUCT_ITEM globally, you can set them per-product by creating ProductClass attributes with the same names (in lowercase).

	Install the necessary extra fields on order.models.Order and order.models.Line (see also How to fork Oscar apps [https://django-oscar.readthedocs.org/en/releases-1.1/topics/customisation.html#fork-the-oscar-app]).:

order/models.py

from oscarcch.mixins import CCHOrderMixin, CCHOrderLineMixin
from oscar.apps.order.abstract_models import AbstractOrder, AbstractLine

class Order(CCHOrderMixin, AbstractOrder):
 pass

class Line(CCHOrderLineMixin, AbstractLine):
 pass

from oscar.apps.order.models import * # noqa

	Create and run migrations for the order app.:

$ python manage.py makemigrations order
$ python manage.py migrate

For usage, continue to Usage.

Usage

Simple Integration

The library includes a mix-in class that can be added to order.utils.OrderCreator to enable tax calculation as part of the order placement process. Override oscar.apps.order.utils.OrderCreator in order/utils.py and add the mix-in directly before the super class:

from oscarcch.mixins import CCHOrderCreatorMixin
from oscar.apps.order import utils

class OrderCreator(CCHOrderCreatorMixin, utils.OrderCreator):
 pass

Custom Integration

For more complicated needs, you can interface with the tax calculation API directly. CCHTaxCalculator is used to apply taxes to a user’s basket.:

from oscarcch.calculator import CCHTaxCalculator
from oscarcch.models import OrderTaxation

Take a basket and the customer's shipping address and apply taxes to the basket. We can optionally
tolerate a failure to connect to the CCH server. In such a case, tax will be set to 0 and the method
will return none. In normal cases, the method will return the details of the taxes applied.
cch_response = CCHTaxCalculator().apply_taxes(basket, shipping_address, ignore_cch_fail=True)
is_tax_known = (cch_response is not None)

...
Do other things necessary to convert the basket into an order
...

Take the tax details generated earlier and save them into the DB.
if is_tax_known:
 OrderTaxation.save_details(order, cch_response)

Django Settings

All settings in oscarcch.settings can be overridden by in your Django project’s settings file.

Connection Settings

	
oscarcch.settings.CCH_WSDL = 'file:///home/docs/checkouts/readthedocs.org/user_builds/django-oscar-cch/checkouts/latest/sandbox/wsdl/cch.xml'

	Full URL of the CCH WSDL.

	
oscarcch.settings.CCH_MAX_RETRIES = 2

	Max number of times to retry to calculate tax before giving up.

	
oscarcch.settings.CCH_ENTITY = 'TESTSANDBOX'

	Default entity code to send to CCH.

	
oscarcch.settings.CCH_DIVISION = '42'

	Default division code to send to CCH.

	
oscarcch.settings.CCH_SOURCE_SYSTEM = 'Oscar'

	Name of the source system to send to CCH. Defaults to Oscar.

Transaction Settings

	
oscarcch.settings.CCH_TEST_TRANSACTIONS = True

	Whether or not to set the test flag in CCH requests. Defaults to the same value as Django’s DEBUG setting.

	
oscarcch.settings.CCH_TRANSACTION_TYPE = '01'

	CCH Transaction Type Code. Defaults to 01.

	
oscarcch.settings.CCH_CUSTOMER_TYPE = '08'

	CCH Customer Type. Defaults to 08.

	
oscarcch.settings.CCH_PROVIDER_TYPE = '70'

	CCH Provider Type. Defaults to 70.

	
oscarcch.settings.CCH_FINALIZE_TRANSACTION = False

	Whether or not to set the CCH finalize transaction flag. Defaults to False.

Product Taxation Settings

	
oscarcch.settings.CCH_PRODUCT_SKU = 'ABC123'

	Default CCH Product SKU. Can be overridden by creating and setting a Product attribute called cch_product_sku.

	
oscarcch.settings.CCH_PRODUCT_GROUP = ''

	Default CCH Product Group Code. Can be overridden by creating and setting a Product attribute called cch_product_group.

	
oscarcch.settings.CCH_PRODUCT_ITEM = ''

	Default CCH Product Item Code. Can be overridden by creating and setting a Product attribute called cch_product_item.

Other Settings

	
oscarcch.settings.CCH_TOLERATE_FAILURE_DURING_PLACE_ORDER = True

	When using the Simple Integration, this controls whether or not to allow placing an order when the call to
CCH for tax calculation fails or times out. Defaults to True. When False and an error occurs,
OrderCreator.place_order will raise an Exception.

	
oscarcch.settings.CCH_PRECISION = Decimal('0.01')

	Decimal precision to use when sending prices to CCH. Defaults to two-decimal places.

	
oscarcch.settings.CCH_POSTALCODE_LENGTH = 5

	Max length of postal-codes to send to CCH. Defaults to 5. All digits and characters after this limit will
be clipped in the SOAP request.

	
oscarcch.settings.CCH_TIME_ZONE = <DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>

	Timezone to use for date times sent to CCH. Defaults to UTC.

API Reference

PNP Installations

	
class oscarcch.calculator.CCHTaxCalculator

	Simple interface between Python and the CCH Sales Tax Office SOAP API.

	
apply_taxes(basket, shipping_address, ignore_cch_fail=False)

	Apply taxes to a Basket instance using the given shipping address.

Pass return value of this method to OrderTaxation.save_details
to persist the taxation details, CCH transaction ID, etc in the database.

	Parameters

	
	basket – Basket instance

	shipping_address – ShippingAddress instance

	ignore_cch_fail – When True, allows CCH to fail silently

	Returns

	SOAP Response.

	
client

	Lazy constructor for SOAP client

	
estimate_taxes(basket, shipping_address)

	DEPRECATED. Use CCHTaxCalculator.apply_taxes instead.

Models

	
class oscarcch.models.OrderTaxation(*args, **kwargs)

	Persist top-level taxation data related to an Order.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
messages

	Message text returned by CCH

	
order

	One-to-one foreign key to order.Order.

	
classmethod save_details(order, taxes)

	Given an order and a SOAP response, persist the details.

	Parameters

	
	order – Order instance

	taxes – Return value of CCHTaxCalculator.apply_taxes

	
total_tax_applied

	Total Tax applied to the order

	
transaction_id

	Transaction ID returned by CCH

	
transaction_status

	Transaction Status returned by CCH

	
class oscarcch.models.LineItemTaxation(*args, **kwargs)

	Persist taxation details related to a single order line.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
country_code

	Country code used to calculate taxes

	
line_item

	One-to-one foreign key to order.Line

	
state_code

	State code used to calculate taxes

	
total_tax_applied

	Total tax applied to the line

	
class oscarcch.models.LineItemTaxationDetail(*args, **kwargs)

	Represents a single type tax applied to a line.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
data

	HStore of data about the applied tax

	
taxation

	Many-to-one foreign key to LineItemTaxation

Changelog

2.2.9

	Internationalization

2.2.8

	Fix a few more Django 2.0 deprecation warnings that were missed in 2.2.7.

2.2.7

	Fix Django 2.0 Deprecation warnings.

2.2.6

	Add support for Oscar 1.5 and Django 1.11.

2.2.5

	Detect 9-digit ZIP codes in shipping a warehouse addresses and, instead of truncating the last 4 digits, send them in the Plus4 field of the SOAP request.

2.2.4

	[Important] Fix bug causing order lines to get deleted is the corresponding basket or basket line is deleted.

2.2.3

	Handle bug occurring when a basket contained a zero-quantity line item.

2.2.2

	Upgrade dependencies.

2.2.1

	Simplified retry logic and fixed infinite loop issue.

2.2.0

	Improved documentation.

	
	Added ability to retry CCH transactions when requests raises a ConnectionError, ConnectTimeout, or ReadTimeout.
	
	Added new setting, CCH_MAX_RETRIES, to control how many retries to attempt after an initial failure. Defaults to 2.

2.1.0

	Remove caching functionality from CCHTaxCalculator.estimate_taxes since miss rate was almost 100%.

	Fix bug in tax calculation causing taxes to be calculated based on pre-discounted prices instead of post-discounted prices.

	Add optional basket line quantity override by checking for property BasketLine.cch_quantity. Falls back to standard quantity if property doesn’t exist.

2.0.0

	Renamed package to oscarcch for consistency. Set db_table option on models to prevent requiring table rename.

	Move tests inside oscarcch package.

1.1.1

	Fix bug where calculator could throw exception even when ignore_cch_error flag was set.

1.1.0

	Add the ability to set CCH product SKU, item, and group per-product in addition to globally.

1.0.5

	Add CCH_TIME_ZONE setting.

	Send time zone aware ISO format date as CalculateRequest InvoiceDate node. Formerly just sent the date.

1.0.4

	Truncate ZIP coes so that CCH doesn’t choke when the user supplies a full 9-digit ZIP code.

1.0.3

	Improve unit tests by mocking all requests and responses. This allows running tests without a connection to an actual CCH server instance.

	Fixed bug where floats from SOAP response weren’t properly converted into quantized decimals when saving OrderTaxation and LineTaxation models.

1.0.2

	Made instrumented-soap dependency optional.

	Moved gitlab testing from the shell executor to the docker executor.

	Added better usage documentation.

1.0.1

	Fixed an exception when raven isn’t installed.

1.0.0

	Initial release.

Index

 A
 | C
 | D
 | E
 | L
 | M
 | O
 | S
 | T

A

 	
 	apply_taxes() (oscarcch.calculator.CCHTaxCalculator method)

C

 	
 	CCH_CUSTOMER_TYPE (in module oscarcch.settings)

 	CCH_DIVISION (in module oscarcch.settings)

 	CCH_ENTITY (in module oscarcch.settings)

 	CCH_FINALIZE_TRANSACTION (in module oscarcch.settings)

 	CCH_MAX_RETRIES (in module oscarcch.settings)

 	CCH_POSTALCODE_LENGTH (in module oscarcch.settings)

 	CCH_PRECISION (in module oscarcch.settings)

 	CCH_PRODUCT_GROUP (in module oscarcch.settings)

 	CCH_PRODUCT_ITEM (in module oscarcch.settings)

 	CCH_PRODUCT_SKU (in module oscarcch.settings)

 	
 	CCH_PROVIDER_TYPE (in module oscarcch.settings)

 	CCH_SOURCE_SYSTEM (in module oscarcch.settings)

 	CCH_TEST_TRANSACTIONS (in module oscarcch.settings)

 	CCH_TIME_ZONE (in module oscarcch.settings)

 	CCH_TOLERATE_FAILURE_DURING_PLACE_ORDER (in module oscarcch.settings)

 	CCH_TRANSACTION_TYPE (in module oscarcch.settings)

 	CCH_WSDL (in module oscarcch.settings)

 	CCHTaxCalculator (class in oscarcch.calculator)

 	client (oscarcch.calculator.CCHTaxCalculator attribute)

 	country_code (oscarcch.models.LineItemTaxation attribute)

D

 	
 	data (oscarcch.models.LineItemTaxationDetail attribute)

E

 	
 	estimate_taxes() (oscarcch.calculator.CCHTaxCalculator method)

L

 	
 	line_item (oscarcch.models.LineItemTaxation attribute)

 	LineItemTaxation (class in oscarcch.models)

 	LineItemTaxation.DoesNotExist

 	
 	LineItemTaxation.MultipleObjectsReturned

 	LineItemTaxationDetail (class in oscarcch.models)

 	LineItemTaxationDetail.DoesNotExist

 	LineItemTaxationDetail.MultipleObjectsReturned

M

 	
 	messages (oscarcch.models.OrderTaxation attribute)

O

 	
 	order (oscarcch.models.OrderTaxation attribute)

 	OrderTaxation (class in oscarcch.models)

 	
 	OrderTaxation.DoesNotExist

 	OrderTaxation.MultipleObjectsReturned

S

 	
 	save_details() (oscarcch.models.OrderTaxation class method)

 	
 	state_code (oscarcch.models.LineItemTaxation attribute)

T

 	
 	taxation (oscarcch.models.LineItemTaxationDetail attribute)

 	total_tax_applied (oscarcch.models.LineItemTaxation attribute)

 	(oscarcch.models.OrderTaxation attribute)

 	
 	transaction_id (oscarcch.models.OrderTaxation attribute)

 	transaction_status (oscarcch.models.OrderTaxation attribute)

 nav.xhtml

 Table of Contents

 		
 django-oscar-cch

 		
 Installation

 		
 Caveats

 		
 Installation Guide

 		
 Usage

 		
 Simple Integration

 		
 Custom Integration

 		
 Django Settings

 		
 Connection Settings

 		
 Transaction Settings

 		
 Product Taxation Settings

 		
 Other Settings

 		
 API Reference

 		
 PNP Installations

 		
 Models

 		
 Changelog

 		
 2.2.9

 		
 2.2.8

 		
 2.2.7

 		
 2.2.6

 		
 2.2.5

 		
 2.2.4

 		
 2.2.3

 		
 2.2.2

 		
 2.2.1

 		
 2.2.0

 		
 2.1.0

 		
 2.0.0

 		
 1.1.1

 		
 1.1.0

 		
 1.0.5

 		
 1.0.4

 		
 1.0.3

 		
 1.0.2

 		
 1.0.1

 		
 1.0.0

_static/file.png

_static/minus.png

_static/plus.png

